SMT表面贴装工艺中的锡膏及印刷技术
来源:收集 点击数:2541次 更新时间:2019/11/27 10:03:34
SMT表面贴装工艺中的锡膏及印刷技术
一、前言 所谓的Reflow,在表面贴装工艺(SMT)中,是指锭形或棒形的焊锡合金,经过熔融并再制造成形为锡粉(即圆球形的微小锡球),然后搭配有机辅料(助焊剂)调配成为锡膏;又经印刷、踩脚、贴片、与再次回熔并固化成为金属焊点之过程,谓之Reflow Soldering(回流焊接)。此词之中文译名颇多,如再流焊、回流焊、回焊(日文译名)熔焊、回焊等;笔者感觉这只是将松散的锡膏再次回熔,并凝聚愈合而成为焊点,故早先笔者曾意译而称之为“熔焊”。但为了与已流行的术语不至相差太远,及考虑字面并无迂回或巡回之含意,但却有再次回到熔融状态而完成焊接的内涵,故应称之为回流焊或回焊。
图1左图SMT现场安装之锡膏印刷机,为了避免钢板表面之锡膏吸水与风干的烦恼起见,全机台均保持盖牢密封的状态。右为开盖后所见钢板、刮刀及无铅锡膏刮印等外貌。 SMT无铅回流焊的整体工程与有铅回流焊差异不大,仍然是:钢板印刷锡膏、器件安置(含片状被动组件之高速贴片,与异形零件大形组件之自动安放)、热风回焊、清洁与品检测试等。不同者是无铅锡膏熔点上升、焊性变差、空洞立碑增多、容易爆板、湿敏封件更易受害等烦恼,必须改变观念重新面对。事实上根据多年量产经验可知,影响回焊质量最大的原因只有:锡膏本身、印刷参数以及回焊炉质量与回焊曲线选定等四大关键。掌握良好者八成问题应可消弭之于无形。
二、锡膏的制造与质量
2.1锡膏组成与空洞
图2锡稿回焊影响其锡性与焊点强度方面的因素很多,此处归纳为五大方向,根据多年现场经验可知,以锡膏与印刷及回焊曲线(Profile)等三项占焊接品质之比重高达七八成以上,以下本文将专注于此三大内容之介绍,至于机器操作部分将不再著墨。 (即通称之Flux助焊剂)所组成;由于前者比重很大(7.4-8.4)而后者的比重很轻(约在1-1.5),故其体积比约为1:1。SAC无铅焊料之比重较低(约7.4),且因沾锡 较差而需较多的助焊剂,因而体积比更接近1:1。故知锡粉完成愈合形成焊点之回焊后,其浓缩后的体积将不足印膏的一半。一旦外表先行冷却固化,深藏在内的有机物势必无法逃出,只好被裂解吹胀成为气体。此即锡膏回焊之各种焊点中,气洞或空洞(Voiding)无所不在的主要成因,其数量与大小均远超过波焊。
图3无铅锡膏中之锡粉(Powder指微小球体)约占重量比88-90%,必须正圆正球形才能方便印刷中的滑动。由于硬度较软容易被压伤,故搅拌时要小心。左二图即为无铅锡粉之放大图。右图为锡膏中大小锡粉搭配成型的印著画面。 现行无铅锡膏以日系SAC305为主(欧系SAC3807,或美系SAC405等次之),日系尚另有SZB83,及SCN等。至于AIM公司的著名锡膏CASTIN(Sn2.5Ag0.8Cu0.5Sb)之四元合金在亚太地区则很少见到。
2.2锡粉制造与质量
图4锡粉是从熔融液锡所成形而调制,左图为氮气塔中利用强力氮气喷成粉体之情形,右为液锡在离心力设备上甩出成粉的另一种制程。
之后分别用筛子筛选出各种直径的小球,然后再按尺寸大小采重量比例去与助焊剂调配与混合,即成为回焊用的锡膏。
在助焊剂未能彻底清除下,熔融愈合中将会被主体排挤出去而成为不良的锡球。不过一旦外表完全无氧化物时,也较有机会发生“冷熔”(Cold Welding)现象进而容易堵死钢板开口。通常要求开口之宽度以并迭5-7颗主要锡球为原则。
2.3助焊剂之成份及品质
树脂——也就是整体助焊剂的基质,一向以水白式松香(Rosin或称松脂)为主,常温中80-90%为固体形式的松脂酸(Abietic Acid),高温中将熔融成为液体并展现活性 (常温中不具活性),可用以去除焊料或待焊底材等某些表面轻微的氧化物。
图7此图说明印妥之锡膏在预热中,会引发锡粉表面甚至铜垫的氧化,但到达峰温时,在助焊剂迅速发挥威力下可对各种氧化物进行化学反应并使之溶解,进而出现锡粉的熔融愈合。在此等反应进行的同时也将出现金属盐类与多量的气体,以致冷却后的焊点中免不了会出现空洞
其二为氧化还原反应,以甲酸(蚁酸)将金属氧化物予以还原,并再经后续之热裂解反应,最具代表性:
溶剂——以分子量较大的某些高级醇类,或醚类酮类等较常被采用,可用以溶解某些固态的有机物;例如M-Pyrols即为著名的溶剂化学品。 2.4锡膏等级与配制 按照J-STD-005锡膏规范(表2A与2B,见次页),依比例选出表列各种直径的锡粉,然后搭配助焊剂,于特殊“双行星轨道”之混搅机中进行轻柔搅拌(Double Planetary Mixing)中,在不伤及锡粉下可使均匀混合成为锡膏。此种“双行星”搅拌方式,是利用两具双拌桨,从同一轴心对容器内的膏体进行慢速旋转搅拌。该四桨叶是以其厚度方向从膏体的外缘连续划过,逐渐逼使内外膏料产生高效率的混合,只要划过3圈后,大部膏料均已完成彼此混合;旋转36圈后,任何一桨均已与全部成员完成接触,是一种很温柔但却高效的搅拌机。
锡膏是一种高单价的物料(以SAC305锡膏而言,每公斤即在N.T.2000元以上),一旦发现吸水则只有报废一途以减少后患。国际规范J-STD-005在其表2A与2B中,已将六种型式(Type)锡膏中的锡粉,按不同直径在重量百分比方面加以规定,以减少在印刷与踩脚时的坍塌,并在热风回焊中容易愈合成为良好的焊点。下列者即为各型锡膏中锡粉组成之百分比,其中最常用者为Type3(主要锡粉直径为35-38μm),其次是用于密距窄垫的Type4(锡粉直径以30μm为主),其它Type在组装业界较少使用(其它Type5 or 6系用于覆晶Flip Chip之封装)。
2.5锡膏现场作业性品质 事实上锡膏质量之待检项目甚多,不同规范亦有不同的要求,一般在作业质量与后续可靠度方面,平均即有15-20项之多。供货商也并非在每次出货时都要每项必做。至于使用者则只需就其生产作业的必要性,且在无需精密昂贵仪器的条件下,以简易的手法检测其关键项目即可。以下五种质量项目即按此种观点而选列,可供使用者现场参考。
(1)愈合性(凝聚性或熔合性)试验
本试验选用Al2O3皮膜的铝板,是刻意将其当成传热载体而不使产生沾锡反应(即出现IMC),纯粹只在了解锡粉本身愈合能力的好坏而已。也可在完成锡膏印刷并于室温中放置24小时后,再进行愈合试验,以观察其抗湿及抗氧化的能力如何。前页之四图即为J-STD-005在3.7节中所列之有铅锡膏允收规格之图标画面。
(2)散锡性试验Spreading Test
图11此为无铅与有铅两种锡膏,在窄铜面上散锡性的比较。相同条件下无铅锡膏的焊锡性就相形见拙了。 有铅焊料(63/37)之表面张力(Surface Tension)为0.506 N/m;但SAC305之表面张力却增为0.567N/m,比起前者要超出20%之多。表面张力加大即表内聚力(Cohesive Force)增加,而向外扩展的附着力(Adhesive Force)却减小。于是无铅锡膏在散锡性方面当然就比起有铅锡膏差了一截,若能在助焊剂的活化性能方面有所提升时,也许无铅膏还可展现较好的焊锡性。 日商对此做法是利用1.6mm厚的双面板,做出32mil(800μm)宽的多条并行线路,之后加全面印绿漆而留出线路中间2cm长的裸铜区(或另加做不同的表面处理以方便评比)。于是在此可焊区的中央印刷上直径950μm厚度150μm(6mil)的无铅锡膏,然后利用生产线的回焊曲线进行试焊,并观其向两侧散锡的能力。只需简单的量测已散锡的长短,即可知晓其可焊皮膜或锡膏品牌,在“散锡”(Spreadability)方面的质量好坏了。
图12此为日本工业规范对锡膏在散锡性方面的试验方法,可针对锡膏品牌或可焊性表面处理进行散锡性的评比,孰优孰劣立见分晓。
(3)黏度试验Viscosity Test与黏度指数(Thixotropy)
图13左为业界所广用Malcom牌之锡膏粘度计PCL-2201,右为其试验平台之特写。 至于黏着指数(或称抗垂流指数Thixotropy)之质量项目,事实上美式锡膏规范J-STD-005并未列入,至于其新A版中是否已纳入则目前尚不得知。日本工业标准JIS-Z-3284则已实行多年,其做法是先求出上述10rpm在20分钟后的黏度值后,再分别另行测出3rpm的6分钟数据,及30rpm的3分钟数据。然后将此两种数据分别求取对数值(Log),此等读值应落在0.45-0.65之间。所谓的Thixotropy也就是控制Slump的能力如何的指标,可令读者较易体会其与抗坍塌性或抗垂流性之间的关系。也就是说印刷后较长时间的置放中(例如10小时),观察是否出现坍塌现象的质量。
图14此为了解粘著指数所刻意印刷之锡膏,可做为现场对比之用。希望其数据能落在0.4与0.6之间,即最为理想最适合生产用途。
(4)黏着力(Tack Force)
(5)印刷能力(Printability)
三、锡膏的管理与印刷
3.1冷藏储存
3.2干燥环境
3.3回温后开封使用 未开封前已回温的锡膏,要连瓶一起放在公转与自转合并的搅拌机中,并就容器之不同位向予以定时转动,以达到内盛锡膏整体均质的目的。正确开封的锡膏,还要用小型压舌片采固定方向温和搅拌约1-3分钟,使整体之分布更为均匀,不宜强烈与过度搅拌,以免锡膏受损及在剪应力(Shear Force)方面的弱化,进而可能导致坍塌(Slumping)甚至焊后搭桥短路的发生。
图17良好的锡膏不但在印刷时不可糊涂与变形,正常压力踩脚时也不可发生坍塌与移位,否则回焊一定会出现搭桥短路的麻烦。 钢板上的锡膏若未能全数用完而必须刮回储存时,则应另外单独存放,不可与新膏混和。为了节省成本起见,当旧膏再次回到钢板上用于较低阶产品时,亦应另掺较多量的新膏以调和使用。搭配比例则以方便印刷之施工为原则,也有质量较严的业者则宁可不用旧膏。至于有铅与无铅锡膏当然是绝对不能混用,必须要将钢板彻底用溶剂(IPA)洗净,才能换膏。
3.4钢板开口(Aperture) 焊性良好的有铅锡膏,其钢板开口(Aperture)一般要比PCB的承垫(Pads)需小一点,一来可节省用膏,二来也可达到减少外溢短路的烦恼。但无铅锡膏的焊性较差,常需放大开口与承垫的比率为1:1,甚至超过承垫到达扩印(Overprint)的地步才行。事实上无铅锡膏愈合时的内聚力很大,很容易就会把外缘部份拉回到中央来。再者输送轨道上待印的PCB,到达定位上升触及钢板底面之际,其待印板底部的支撑一定要够强才行。也就是说在刮刀动态施压中板子不可出现下沉之变形,以减少诸多后患的发生。 印刷台面之左右为X轴,远近为Y轴,板厚为Z轴,必须要将正确的板厚读值输入计算机,以达到待印板上的钢板与轨道平齐,刮印中才不致造成刮刀的受损。其板厚要用千分卡(Caliper)仔细测量与输入才不致发生差错。
3.5刮刀速度与压力
凡当刮压太重时,则印膏中心处会出现掠过 的浮刮(Scooping)缺点,也会发生溢出(Bleed Out)情形。
图19左为刮刀下沉太多所造成印膏的浮刮现象。中为钢板开口不洁所引发的溢出与糊印,右为待印板印妥后下降脱模太快所造成的撕印。
有时可从着膏区的绿漆边缘处,看到一连串锡粒的残存,或外侧锡粒已被压扁者,均为已发生Bleed Out的明证。倘若刮压不足以致钢板表面尚留有锡膏残迹时,其藕断丝连下又将出现印膏局部被撕起带走的“撕印”(Torn Prints),更将引发覆盖不足或提早干涸等问题。事实上刮压与印速(Print Speed)成正比,只要降慢印速即可减轻刮压,此等由于重压而发生的问题也都将自然消失了。 3.6缓脱之降距(Separation Distance)
当板面已完成锡膏印刷之作业,该加工板即将在各顶柱移开后,会先行自动缓降以脱离不锈钢模板。但由于模板开口与印膏两者尚有黏着力量,因而当板面的印膏欲自开口处下降脱离之际,其动作必须缓慢温柔,以免牵动印膏造成不良之狗耳(Dog Ear)现象。直到印膏已全部安全降离脱出模板开口为止,才可对待印板进行较快速的续降与平移动作。此段安全性缓降之落差即称之为“缓脱降距”。通常此段小心翼翼的降距约为0.1吋(即100mil)。困难印品如CSP等圆垫而言,其降速应保持在0.1-0.2 in/sec,至于其它不太关键的印垫则可加快到0.3-0.5 in/sec之降速。凡当生产已顺利时,此段降距的耗时还可予减缩短,以提高效率节省全线直通所需的时间。至于难度高的产品则应从延缓其降速做起,以减少质量问题。
无铅回焊的最高目标,是要以最起码的热量,将板面所有待装的大小组件全数焊妥,并应避免施加过多热量造成组件与电路板的伤害。小心运用可移动式感热仪(Profiler),找出正确的回焊曲线将可达成此一目标。
图22左图为IR(红外线)与热风两种热源共用的回焊炉,长条发橙光者即为IR热源,另外灰色有小孔之不锈钢者为热风出口。右图为单纯热风之回焊机。 |
网友点评
参与点评